If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+12x-23=0
a = 5; b = 12; c = -23;
Δ = b2-4ac
Δ = 122-4·5·(-23)
Δ = 604
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{604}=\sqrt{4*151}=\sqrt{4}*\sqrt{151}=2\sqrt{151}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{151}}{2*5}=\frac{-12-2\sqrt{151}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{151}}{2*5}=\frac{-12+2\sqrt{151}}{10} $
| -6x-9=-2x-1 | | 2n+n/2=10 | | t-8/2=t+5 | | 0.5*x-0=-8 | | 250=0.02s | | 816=16t | | 816=16t2 | | .5*0-y=-8 | | 2c^2-13c+6=0 | | 1/2*0-y=-8 | | X^2-6x=-12x-9 | | -5x-1/3x=7/3+x | | (3n)+4=-19 | | 30*2^x*5^-x=360^x | | 720=460+(2x+10) | | x-2*0=-1 | | 720=360+(2x+10) | | 5/2x-1/3=2/3x+1/2 | | (x3+-x2-5x+1)=0 | | 8t^2-2t+49=0 | | 0-2y=-1 | | 360=6a | | 4x^2+48x-26837.3476=0 | | 4x^2+48x+26837.3476=0 | | x=2*0+2 | | 0.25x+7=(1/3)x-8 | | .1n+25(n+8)=6.9 | | -0,20*x=30 | | 6x+24=6x+15+9 | | 0=2y+2 | | (x-2)/(x+3)=4 | | x+x-39=103 |